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A matter fabricator 

provides matter for thought 

by A. K. Dewdney 

"Nil posse creari de nilo." 
-LUCRETIUS, De rerum natura 

I 
was not surprised to receive, near

ly a year ago, a long missive from 
someone who claimed to have in

vented a matter fabricator. After all, 
among those who write to me suggest
ing interesting ideas there are a few 
whose assertions do stretch credulity. 
But since the essence of science is an 
open mind (if not a fully ventilated 
one), I try not to dismiss such letters 
until I have read them to the end. 

I am glad I did just that with this 
particular letter, because the inventor 
based his assertion on a legitimate 
mathematical result known as the Ba
nach-Tarski paradox. Named for the 
Polish mathematicians who discov
ered it in the 192 0's, the paradox re
veals how under certain conditions an 
ideal solid can be cut into pieces and 
then reassembled into a new solid 
twice as large as the original one. 

Indeed, the inventor turned out to 
be a professional mathematician who 
has many published papers to his 
credit. For reasons that will soon be
come clear, he shuns any kind of pub
licity and has asked that I call him Arlo 
Upof. It was Upof's familiarity with 
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the Banach-Tarski paradox that first 
led him to investigate the possibility 
of applying the paradox to real matter 
instead of ideal matter. His investiga
tion has paid off handsomely: he has 
written a computer program that gives 
precise directions for cutting a sol
id into many odd-shaped pieces and 
then reassembling them into a solid 
twice the size, leaving absolutely no 
space between the pieces! 

Needless to say, the irriplications of 
Upof's program are profound. To ex
plain the paradox and how the pro
gram exploits it, I can hardly do better 
than to quote from Upof's letter : 

"The paradox is similar to the well
known puzzle involving tangrams, lit
tle pieces of paper cut into simple 
geometric shapes. Four such shapes 
can be assembled into a square that 
has an area of 64 square inches. Yet 
the very same pieces can also be as
sembled into a rectangle that has a 
greater area-65 square inches, to be 
precise. If you do not believe such a 
thing is possible, try cutting up the 
pieces as shown in my drawing" [see 
illustration belowl. 

"If the little pieces of paper were 
instead pieces of gold, there would 
seem to be an automatic increase in 
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How to get a cubic inch of gold for nothing 
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wealth in going from the square to the 
rectangular configuration. Start with a 
square of gold, say, eight inches on a 
side and an inch thick Then cut it 
according to the figure at the left. If 
the pieces are reassembled according 
to the figure at the right, an extra cubic 
inch of gold will have appeared. The 
extra cube would weigh approximate
ly 4.3 ounces and at current prices 
would be worth about $ 1,800." 

Upof goes on to concede that the 
appearance of getting something for 
nothing in the above example is purely 
illusory. But he asserts that although 
the Banach-Tarski paradox has "the 
same effect on one's mind," there is no 
flaw in the theory on which it is based. 
The Banach-Tarski paradox is real-at 
least in a mathematical sense. 

The paradox arises from a proved 
theorem that, when stated in technical 
language, is almost comprehensible: if 
A and B. are any two bounded subsets 
of R 3, each having a nonempty interi
or, then A and Bare equidecompos
able. The theorem can be stated in less 
technical language if one initially con
siders a pair of bodies, of virtually any 
shape and size, that meet two criteria. 
Each body must be "bounded," or ca
pable of being enclosed in a hollow 
sphere of some definite size. And each 
must have a "nonempty interior": it 
must be possible to envision a sphere 
somewhere inside the body that is 
entirely filled with the material of 
which the body is made. 

The two criteria are actually rather 
modest ones. Indeed, almost any ob
ject we might imagine that violates 
them is hardly the kind of object we 
would normally call a body. A straight, 
infinitely long line, for example, vio
lates both criteria: it is not bounded 
and its interior is empty in the sense 
that it has no interior to speak of. 
Also disallowed would be an imagi
nary cloud of points stretching to in
finity in all directions-hardly a body 
in the usual sense of the word. 

According to the theorem, then, any 
two such bounded bodies having non
empty interiors are "equidecompos
able." This means that one can dissect 
both bodies into a finite number of 
pieces that are congruent in a geomet
ric sense: a piece of one body can 
be made identical with a piece of 
the other body merely by rotating it. 
Hence one can in theory dissect a body 
into pieces and label them Alo A2, � • • •  

and dissect a different body into piec
es and label them Bio �, � . . . , so that 
the pieces Al and Bio A2 and � and so 
on are identical. That is the essence of 
the Banach-Tarski paradox. 
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"It is thus possible," Iipof writes, "to 
take two solid spheres, one twice as 
large as the other, and cut them into 
pieces that are pairwise congruent. 
Forget the larger sphere and consider 
only the smaller one. Imagine that it is 
made of gold. In principle it can be cut 
into a finite number of pieces that can 
then be reassembled into a sphere 
twice as large." 

There is no trickery here, although 
one must realize that there are certain 
topological qualifications implied in 
the innocent word "pieces." For one 
thing, they are not necessarily simple 
in form, or even composed of connect
ed parts. Some parts of the same piece 
may come arbitrarily close to one an
other without actually touching. More
over, the pieces cannot be measured 
in any precise way. For example, one 
cannot even imagine a way of gaug
ing their exact volume. What would 
be the actual appearance of such piec
es? Iipof says they are "like nothing 
you have ever seen before. They make 
fractals look like tangrams." 
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The Banach-Tarski paradox holds in 
its most general form only in spaces 
of three or more dimensions. There 
are, however, closely related theorems 
that illustrate the nature of the para
dox in spaces of lower dimensions. A 
crude example of this phenomenon is 
given by the one-dimensional "space" 
consisting of all integers, since the 
subset of even integers represents si
multaneously both half of and the 
whole of the set. The subset is half of 
the set of all integers in the sense that 
only every other integer is in the sub
set. Yet a simple transformation-di
viding each element in the subset by 
2-turns the even integers into the 
entire set of all integers; the set and its 
subset are the same size. 

Most people do not find this fact 
very remarkable, because the size of 
both set and subset happens to be 
infinite. After all, infinity divided by 2 
is still infinity. It would be more excit
ing to find a finite space that can be 
decomposed into paradoxical pieces, 
but that is not possible according to 
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theory, at least if one limits oneself 
to spaces of a single dimension. The 
same applies for Euclidean spaces of 
two dimensions, or "flat" planes. It can 
happen, however, in certain non-Eu
clidean two-dimensional spaces. 

A full explanation of the phenome
non is beyond the scope of this col
umn, but I can give at least a glimpse 
of its paradoxical nature by projecting 
the exotic world of two-dimensional 
hyperbolic space onto an ordinary Eu
clidean disk, as is shown in the illus
tration below. The hyperbolic space 
occupies a half plane, as is shown in 
the upper part of the illustration. Its 
geometry is not Euclidean, wherein 
the shortest distance between two 
points is a straight line. Instead short
est distances are found along semicir
cles. In this illustration the hyperbolic 
space has been dissected into "trian
gular" regions that get smaller toward 
the bottom edge of the space. The 
triangles form the basis of a paradoxi
cal decomposition of the space into 
three pieces that are colored red, blue 

00 

Two projections of hyperbolic space (above) on disks (below). The red piece is both one-half and one-third of the hyperbolic space 
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and yellow. To mathematicians, in this 
context a "piece" may not be all of a 
piece, so to speak It may be composed 
of an infinite number of fragments, 
triangular and otherwise. 

The strange nature of the three piec
es becomes most apparent when one 
views the hyperbolic space through a 
special mathematical porthole, that is, 
by projecting the space in two differ
ent ways onto a disk The point labeled 
P in the hyperbolic space lies at the 
center of the left-hand disk and the 
point labeled I lies at the center of 
the right-hand disk 

In each disk a simple rotational sym
metry involving the three pieces be
comes evident. Consider the red piece 
in the disk at the left. If one imag
ines rotating the disk about its center 
by 120 degrees, or a third of a rev
olution, one sees that it would end 
up-fragment for fragment-on top of 
the yellow piece. Another 120-degree 
rotation would similarly match the 
red piece with the blue one. In other 
words, all three pieces are congruent, 
and together the three pieces make up 
the entire hyperbolic space. 

The paradoxical nature of the space 
becomes evident when one's attention 
turns to the second disk In this view 
of the very same space the red piece 
is congruent to the other two pieces 
combined! To see this, merely imagine 
rotating the red piece by 180 degrees, 
or half a revolution, about the disk's 
center. The red piece will overlie exact
ly both the blue and the yellow piece. 
There is therefore a piece of two-di
mensional hyperbolic space (the red 
piece) that amounts simultaneously to 
a half and a third of the entire space. 

The significance of this demonstra
tion may have been lost in the mathe-

mati cal shuffle. "Why," asks the reader, 
"should I be impressed? " The reason 
is that the three sets represented by 
the colored pieces are absolutely true 
congruences in hyperbolic space. The 
fact that the red piece does not appear 
congruent to a half and a third of 
hyperbolic space at the same time on a 
single disk is a consequence of the 
distortions of hyperbolic space asso
ciated with such projections. 

There is no need for hyperbole or 
hyperbolic spaces in proving the most 
general version of the Banach-Tarski 
paradox, however. The fact is that 
in Euclidean three-dimensional space 
(which approximates the world we live 
in) any two bodies that satisfy the 
most modest conditions imaginable 
are equidecomposable. Unfortunately 
the proof is nonconstructive: it gives 
almost no clue to precisely how one 
would go about demonstrating the 
equidecomposability of two unequal 
solid balls. 

At this point I quote again from 
Upof's letter : 

"I spent many years studying the 
Banach-Tarski paradox and related re
sults. What fascinated me most was 
the nonconstructive character of the 
proof in three dimensions. Although 
mathematicians know that in theory a 
solid ball can be taken apart into a 
finite number of pieces with which 
one can then construct another solid 
ball of twice the size, no one had any 
idea what the pieces might look like, 
because the cutting of the pieces is 
based on what set theorists call the 
axiom of choice. 

"The axiom gets its name not be
cause mathematicians prefer it to oth
er axioms but because it postulates 
that for any collection of sets, no mat-

Original gold ball (left) and Arlo Lipofs reconstruction of it (right) 
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ter how big, there is a way of choosing 
an element from each set in the collec
tion. Indeed, many mathematicians 
prefer not to invoke the axiom, be- . 
cause it does not stipulate just how 
the matching is done. 

"No one, therefore, had any idea of 
what the pieces of a paradoxical de
composition might look like until I 
began to investigate the question. I 
mechanized the proof of the Banach
Tarski paradox. The proof specifies 
that the second (larger) ball can be 
assembled by rotating the pieces of 
the first ball in two ways about its 
center, somewhat like the situation in 
hyperbolic space . . . .  These rotations 
carry each piece of the first ball to its 
corresponding place in the second 
ball. Knowing the points that make up 
each piece and the necessary rota
tions, it was easy to construct a back
tracking routine to cut the different 
pieces from a solid ball. Whenever the 
proof invoked the axiom of choice, I 
merely relied on a random-number 
generator in my personal computer to 
choose which points of the ball were 
to be elements in which sets. 

"To be honest, throughout this re
search I had no idea that I was headed 
in the direction of a matter fabricator. 
I am no fool: I know that normally one 
has to make a clear distinction be
tween the ideal spaces of mathematics 
and the space we live in. But when I 
completed my first simulation of the 
Banach-Tarski theorem, I realized I 
had in hand something like a recipe 
for doubling the size of any solid. 

"It occurred to me to try an experi
ment involving a real material, but I 
initially held back The dimensions of 
the pieces produced by my program 
were all expressed in triple preciSion 
numbers, an accuracy that might well 
demand that I cut atoms in two in 
manufacturing the pieces! Besides, at 
this stage I was beginning to doubt my 
sanity: the idea of carrying out an 
actual decomposition of a solid ball 
had given me a distinct feeling of 
unreality, as though I were living in a 
kind of dream. 

"Of course, I kept repeating to my
self, it couldn't possibly work But to 
no avail. I eventually reached a point 
where I couldn't put the experiment 
off any longer. I cashed in a good part 
of my life savings to buy 12 ounces of 
gold. I had the gold cast into a ball, 
bought a tiny jeweler's saw and began 
to cut the ball up according to my 
program's recipe. A second comput
er program was most useful in this 
process. It catalogued the size and 
shape of each piece. In particular, the 
second program told me where each 
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piece was to go in the second sphere. 
"The entire experiment took seven 

months from start to finish. I worked 
nights and weekends. When at last I 
had finished cutting the pieces, I be
gan assembling them into a second 
sphere of twice the diameter. It was 
delicate and demanding work. I nearly 
lost my eyesight and began to get 
headaches, but I persevered. Slowly 
the second ball took shape-but not 
as a smooth ball. The pieces did not fit 
as well as I had hoped. There were tiny 
spaces between the fragments I had so 
painfully and carefully put in place 
with tweezers. 

"After a few more weeks I finally 
completed the ball. I have sent you a 
drawing of the major joints on its 
surface [see illustration on opposite 
page). Having your readers see the 
map gives nothing away: the surface 
of the ball is child's play compared 
with the intricate arrangement of its 
interior pieces. In any event, the actual 
ball was not as smooth and round as 
my picture implies. It was lumpy and 
irregular-downright ugly. But how I 
clutched the cloth bag that contained 
it on my way to the jeweler! The ulti
mate test of all my work, of course, 
would be to melt the ball down and 
find out whether I was indeed the 
owner of up to eight times as much 
pure elemental gold as I had started 
out with. 

"The next day the jeweler handed 
me a bar of pure gold weighing 49.58 
ounces. It was less than I had expect
ed; those interstitial spaces had taken 
their toll. Yet the thing was no longer 
in doubt. The world's first practical 
application of the Banach-Tarski para
dox had been made. For days I stag
gered around like a drunk, reeling 
from my discovery. At this point I am 
not sure what to do next." 

After that first letter I received no 
further correspondence from Iipof 
for several months. Then one day last 
November the mailman brought me a 
short missive from him, postmarked 
in a South American country: 

"You will no doubt be happy to learn 
that I have to some extent automated 
the procedure of producing large balls 
of gold from small ones. With the 
remainder of my life savings I have 
set up shop in the little town of ___ . Here a few loyal employees 
assemble gold balls. There is a work
room lined with computers and with 
tables at which my people assemble 
the balls. The pieces are now not cut 
out but rather are cast directly and 
worked by my employees. There is 
always excess gold at the end of the 
process with which to begin anew. We 

produce approximately five pounds of 
gold a week from nothing. Is this not 
the philosopher's stone? 

"The time will soon come to move 
on. I do not think I will write again; 
to communicate with you is danger
ous. Excuse me, my friend, but one 
becomes paranoid in the presence of 
such potential. There is much that I 
need to do!" 

I have not heard anything more 
from Iipof. But last December, out of 
curiosity, I began to track the price of 
gold from day to day. For nearly three 
months it has been in a slow but 
steady decline. Perhaps that is the ulti
mate proof for those who thought the 
Banach-Tarski paradox was merely a 
plaything of mathematicians. 

I have, of course, been in touch with 
other mathematicians on the subject 
of the paradox. lowe a particular debt 
of gratitude to Bruno W. Augenstein of 
the Rand Corporation in Santa Monica, 
Calif. It was Augenstein who suggest
ed that I use hyperbolic space as an 
example of the paradoxical properties 
of space. 

Although he does not subscribe to 
Iipof 's claims, Augenstein does con
cede that there may well be a relation 
between the Banach-Tarski paradox 
and the real world. One of Augen
stein's papers, "Hadron Physics and 
Transfinite Set Theory," points out a 
relation between particle physics and 
paradoxical decompositions of ob
jects in three-dimensional space. The 
paper suggests analogies that "give 
directly a large number of known 
physical results and suggest addition
al ones testable in principle. The quark 
color label and the phenomenon of 
quark confinement . . .  have immediate 
explanations via analogies with the 
decomposition theorems." This much 
might interest the physicists, if not 
the alchemists, among the readers of 
this column. 

T
here are a few self-professed "bit 
flippers" in the world, readers 
who keep close watch for the 

appearance of a project that promises 
number-crunching complexity equal 
to their talents. The two-part series on 
cryptology last fall (in the October and 
November issues) raised a cheer in 
this quarter; in particular, the descrip
tion of the Data Encryption Standard 
(DES) in the second part provided am
ple grist for a bit flipper's mill. The DES 
is a scheme for encrypting computer 
messages that is used not only by 
commercial institutions but also quite 
possibly by various military installa
tions around the world. It is long and 
complicated, but that is just the way 

Mike Rosing of Darien, lll., likes it. 
Eschewing software that is too soft, 
Rosing writes his own programs in 
68000 assembly code, a low-level com
puter language that lies at the hard
ware heart of the 68000 microproces
sor chip. 

There is nothing like writing and 
testing a program (at any level) for 
revealing bugs in the original specifi
cations. The input for the P permuta
tion table in the F module was misla
beled; instead of 48 bits it should be 
32 bits. Decryption also produced 
problems for Rosing and the others. 
The 64 bits of the original key are not 
fed in reverse order, the 48-bit "sub
keys" are. They are fed into the central 
block starting with key 16 and ending 
with key l. 

Charles Kluepfel of Bloomfield, N.j., 
wondered what parts of the DES were 
arbitrary. For example, must the E bit
selection table really have the form I 
gave in order for a successful data
encryption system to emerge? And 
what about the substitution tables? 
Wafting rumors hold that the design
ers of the DES deliberately included 
"side doors" in certain parts of the 
cryptosystem that make it somewhat 
easier to decrypt DES ciphertext with
out knowing the original key. 

Daniel Wolf of Santa Maria, Calif., 
has written several programs of inter
est in assembly code for his 68000-
based Amiga computer. Amiga owners 
may request copies of a cryptosys
tern based on the famous Enigma ma-

. chine (described in the October issue) 
or on the RSA algorithm (in the No
vember issue). A major virtue of soft
ware cryptosystems that are written 
in assembly language is their blinding 
speed. Wolf can be reached at Box 
1785, Santa Maria, Calif. 93456. 

Still another journal of cryptology, 
CryptosystemsJoumal, was brought to 
my attention by Tony Patti of Burke, 
Va., . who edits and publishes it. The 
first two issues pursue Patti's goal 
of describing and distributing state
of-the-art cryptosystems for mM PC's 
and compatible computers. Interested 
readers can get in touch with Patti for 
further information at 9755 Oatley 
Lane, Burke, Va. 220 15. 
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